IPCC AR6报告解读:气候变化与人类健康
引言
2022年2月28日IPCC发布第六次评估报告(AR6)第二工作组(WGII)报告《气候变化:影响、适应和脆弱性》[1],评估了气候变化在全球和区域层面对生态系统、生物多样性和人类社会的当前影响以及未来风险,审查了自然界和人类社会在气候变化下的脆弱性、适应能力和局限性。该报告共有18章,其中第7章题为“健康、福祉和不断变化的社区结构”,是基于IPCC第五次评估报告(AR5)[2]进行迭代更新,涵盖了第11章(人类健康:影响、适应和共同利益)、第12.4节(从移民和人口流动层面审视人类安全)、第12.5节(气候变化和武装冲突)和第12.6节(国家完整和地缘政治竞争)的所有内容。
该章主要涵盖的内容包括:(1)综合考虑脆弱性、人口和社区的动态结构等因素,评估气候变化对健康、福祉、移民和冲突的影响;(2)科学界充分审视了基于气候变化情景分析的未来风险;(3)提出应对气候变化风险可能需要特别关注的是适应性挑战、解决方案以及发展路径。文中主要针对该报告第7章关于气候变化对人类健康影响的主要内容和评估结论进行解读,为中国科学界和政策制定者充分理解气候变化对健康的影响机制、未来风险以及适应策略提供参考。
1 已观测到气候变化对人类健康的影响
全球气候变化可通过一系列复杂的过程影响人类健康,其主要途径包括通过极端天气气候事件或不利气象条件直接影响健康,如高温和洪涝等导致过早死亡或诱发疾病;或者通过间接途径如造成病媒生物时空分布变化、环境污染、粮食短缺等方式影响人类健康,使人类罹患传染病、非传染性疾病和其他气候敏感疾病,甚至产生心理压力或精神疾病。
1.1 对传染病的影响
气候变化是影响传染病发生的重要因素,其直接或间接地影响传染病的病原体、媒介生物、宿主以及易感人群,进而改变传染病流行的模式、频率和强度。全球气候变暖会使登革热、疟疾等虫媒传染病的媒介能力得到增强,发病例数呈上升趋势,地理分布范围(甚至在高海拔地区)呈扩大趋势[3]。媒介生物传染病的传播率直接受气候和气象因素的影响(如温度、湿度和降水等),这些气候变量被认为是欧洲东南部西尼罗热传播的重要驱动因素;在越南等地的研究发现,温度及相对湿度与登革热的传播率呈正相关关系[4]。由气候变化导致的温度升高使加拿大地区莱姆病的传染数最大可增加5倍[5]。同时,不断变化的气候正在促进基孔肯雅病毒、寨卡病毒、日本脑炎病毒和裂谷热病毒在亚洲、拉丁美洲、北美洲和欧洲的传播。在中国,过去半个世纪登革热传播的气候适宜性已增加37%[6]。
摄入含有病原微生物污染的饮用水或食物是导致水源性疾病和食源性疾病的主要原因。自AR5以来,越来越多证据表明高温、暴雨、洪水和干旱等极端天气气候事件通过直接或间接途径影响水源性和食源性疾病的发生,并产生级联风险,如2016年安徽洪水受灾地区在洪水发生后感染性腹泻的发生风险增加11%[7-8]。长时间的强降水不仅会冲刷环境中的病原体、污染饮用水,也会造成基础设施薄弱地区的供水系统和卫生管道系统出现过载或破坏现象,进而导致感染性腹泻的发生[9]。温度升高会导致食源性传染病的风险增加,在香港地区,气温30.5℃时沙门氏菌入院治疗风险是气温13℃时的6.13倍;空肠弯曲杆菌导致的食源性疾病发生率在降雨期后明显下降[10]。此外,食源性疾病风险也与从生产到消费的整个食物链、城市化和人口增长、农业生产力下降、食物价格波动、饮食趋势的改变等因素有关。
呼吸道传染病的气候风险因素主要包括由气候变化加剧的极端温度和湿度、沙尘暴、极端降水事件。迄今为止,呼吸道传染病如肺炎和流感与气候环境的关联研究存在显著的空间异质性,如Lam等[11]研究了各种J型、U型或V型温度-肺炎关系,但目前仍难以从定量角度衡量呼吸道传染病的流行多大程度归因于气候因素。也有少量研究发现了干旱和缺水等对其他传染病(如沙眼等)存在风险,但缺乏足够的研究证据。
1.2 对非传染性疾病的影响
非传染性疾病是由遗传、环境和行为方式等因素共同作用的结果,是全球最主要的疾病负担。心脑血管疾病包括冠心病、脑血管病、外周动脉疾病、风湿性心脏病、先天性心脏病等,世界上3/4的心脑血管疾病死亡都发生在中低收入国家,是全球死亡的主要原因。气候变化通过影响高温天气,导致体力活动减少、脱水和睡眠障碍等问题,从而增加了心脑血管疾病风险,而暴露于颗粒物、臭氧等空气污染物会引起炎症、血栓状态、内皮功能障碍和高血压等[12]。值得注意的是,空气污染与气象条件对心脑血管疾病的健康效应十分复杂,例如冷季和暖季的臭氧浓度对血栓和高血压等疾病的风险存在显著差异[13],但复合暴露的健康影响尚需进一步研究。
非传染性呼吸道疾病主要包括哮喘、慢性阻塞性肺病和肺癌,由于其风险因素的暴露途径和暴露时间受环境影响较大而对气候变化非常敏感[14]。AR6报告显示,2019年非传染性肺病占全球死亡人数的10.6%,伤残调整寿命年①占5.9%[1]。气候变化相关的环境因素是过敏性呼吸道疾病的主要驱动因素,如灰尘、空气污染物、荒野火灾和热暴露等增加了空气中过敏原的浓度并延长了暴露时间,从而损坏人体肺功能。气候变化延长了花粉季节持续时间并增加了花粉致敏性,造成春季哮喘发作风险的增加,其中老人和城市人口是主要易感人群。因此,鼻炎和哮喘等过敏性呼吸道疾病的社会负担预计会随着气候变化的影响而持续增加。
气候变化通过影响与致癌有关的化学危害物质的暴露途径,增加人类罹患恶性肿瘤的风险,但风险程度尚不明确。恶性肿瘤在全球造成巨大的疾病负担,2019年全球死亡人数略高于1000万,伤残调整生命年数为2.51亿[1]。气候变化可通过改变致癌多芳香烃的运输过程和其他致癌毒素分布情况,使致癌物质暴露于多种环境介质,增加癌症风险。极端天气气候事件和不断上升的温度也会增加糖尿病患者(尤其是心脑血管疾病合并症患者)的发病率和死亡率。极端天气气候事件对慢性病患者的健康影响是由一系列复杂因素造成的,例如由于治疗中断和无法获得药物,慢性病患者在极端天气气候事件期间及之后均面临较高的健康风险。
1.3 对精神心理健康的影响
系统评估精神心理健康和气候变化的关系是AR6报告的重要新增内容,其影响机制复杂(图1),主要与个体指标(如经济收入、劳动能力、健康状况)和环境卫生(如空气污染、水污染、绿地)等影响因素有关。
图1
图1 气候变化对心理健康的影响
注:本图改绘自AR6 WGII报告第7章第7.2.5节的图7.6。
Fig. 1 Climate change impacts on mental health
已观察到的极端天气气候事件会对心理健康产生不利影响,并与其他的非气候因素相互作用。高温暴露与一系列不良心理健康结局(如自杀、精神疾病的住院和急诊、焦虑、抑郁和急性应激等)呈正相关关系[15],例如,在美国月平均气温>30℃时心理健康问题就诊增加约0.5%;月最高气温每上升1℃心理健康问题就诊增加约2%[16],而墨西哥和美国的自杀率分别增加2.1%和0.7%[17]。风暴、洪水、热浪、野火和干旱等极端天气气候事件对受灾居民的心理健康具有显著影响,表现为创伤后应激障碍、焦虑、失眠、药物滥用和抑郁等[18]。例如,美国最严重灾害之一的卡特里娜飓风造成灾区居民精神健康问题增加约4%,20%~30%经历过自然灾害的人在事件发生后的几个月内患上抑郁症或创伤后应激障碍[16,19];而气候变化对经济、社会和粮食系统的影响也可能波及到心理健康。此外,即使没有受到气候变化的直接影响,人们对气候变化潜在风险的感知也会影响心理健康[20],且直接经历过极端天气气候事件的居民、儿童和青少年更加敏感。
研究表明,气候变化已经对人群的主观幸福感产生了负面影响。具体而言,气候变化通过炎热天气和空气污染等途径,降低个体正常行为或社交模式的幸福感,极端高温还与人际间和群体间的攻击以及暴力犯罪的增加有关。美国的大规模人群研究发现,相对于10~16℃,人们暴露于21~27℃和>32℃时幸福感会下降1.6%和4.4%[21];在中国日均温度≥20℃时,人们情绪开始变差[22]。风暴、海岸侵蚀、干旱或野火等事件通过破坏绿地和海洋等空间或当地有价值景观,使居民产生如悲伤、忧郁等负面情绪[23]。此外,气候变化还会威胁到劳动生产率、认知和学习能力,从而影响职业人群和青少年的主观幸福感。
1.4 对其他气候敏感疾病的影响
气候变化下的热浪、洪涝、干旱、野火等极端事件频发会显著增加人群死亡和发病风险,据估计,1998—2017年,1.15万起极端天气气候事件导致了52.6万人死亡,在受影响最严重的10个国家中,年均归因全因死亡率为3.5人/10万人[24]。其中,户外劳动者、孕产妇、新生儿、老年人等属于脆弱人群。高温天气会使机体发生脱水、肾功能减退、脑功能减退等不良反应和健康损害,并增加中暑、劳累型热射病等热相关疾病的风险,严重威胁职业人群的健康[25],同时也会降低职业人群劳动能力和生产效率,造成工作时间和生产力损失,增加社会经济负担[6]。一项全球层面的评估指出,2000—2018年间,由于高温而损失的潜在工作时间有所增加,2018年潜在工作时间损失了1336亿h,比2000年增加了450亿h[26]。对中国而言,2019年与热相关的生产力损失估计为99亿h,相当于当年全国总工作时间的0.5%,其中广东省损失占全国近1/4[6]。此外,孕产妇由于怀孕期间生理功能发生了一系列改变,如体温调节能力下降,因此孕期暴露于极端温度使得发生早产、低出生体重、死产等不良孕产结局的风险明显增加[27],并对子代健康(新生儿及儿童)造成持续且严重的损害。
在全球范围内,气候变化与极端事件还会影响粮食安全,主要表现在粮食生产供应的稳定性、粮食获取以及利用等方面,从而使营养不足、超重和肥胖等营养不良问题日益严峻,并使人群对其他疾病的易感性大幅增加,尤其对中低收入国家的孕产妇及儿童的影响更明显[28]。此外,气候变化还对北极生态系统造成深远影响,使多年冻土融化释放大量汞,并加剧汞的甲基化过程。甲基汞沿着细菌、浮游生物、大型无脊椎动物、草食性鱼类、肉食性鱼类的食物链富集,通过生物放大作用,最终反馈给食用者,从而对人类尤其是当地居民的健康造成严重危害[29]。
2 气候变化对人类健康影响的未来风险预估
目前的研究主要是根据多个典型浓度路径(RCPs)或共享社会经济路径(SSPs)/RCPs的组合情景,预估具有气候敏感疾病的未来风险。气候变化将显著增加一系列气候敏感疾病的健康风险,尤其是在高排放情景下造成的人群疾病或死亡风险最大,但风险程度取决于未来几十年的排放情况、人口增长、经济发展和适应行动等关键性因素。
2.1 对传染病影响的未来预估
携带病原体的病媒生物地理分布和数量变化,将受到未来气候变化的极大影响。撒哈拉以南非洲、亚洲和南美洲部分地区疟疾媒介按蚊的分布范围和传播能力将随着气温上升而增加,预计到2070年,南美洲疟疾媒介按蚊的分布范围将扩大到该大陆面积的35%~46%。气温上升还可能会导致病媒生物的适宜生境向极地移动,在RCP2.6和RCP8.5情景下,埃及伊蚊数量将分别增加20%和30%。在RCP6.0情景下,到2050年全球将有一半的人口暴露于埃及伊蚊和白纹伊蚊,会进一步加剧登革热的传播风险[30]。在SSP1-4.5、SSP2-6.0和SSP3-8.5情景下,全球预计分别有10亿、22.5亿和50亿人面临登革热的暴露风险[31]。气候变化还将继续扩大莱姆病媒介肩胛骨硬蜱的地理分布范围,促进莱姆病在欧洲的传播。非洲和亚洲血吸虫宿主钉螺的分布也会受气候变化影响,如东非大部分地区未来20~50年间的曼氏血吸虫人群感染风险将增加20%[32]。
感染性腹泻的流行风险将在很大程度上受到未来社会经济和适应水平的影响。由于社会经济发展,腹泻造成的死亡人数可能下降,但若不采取气候适应措施,总死亡人数仍将不断增加。在高排放情景下,2030年和2050年腹泻导致15岁以下儿童死亡人数将分别增加4.8万人和3.3万人(尤其在非洲和东南亚地区)。此外,对于未来预计强降水或洪水事件增加的地区,空肠弯曲杆菌病和其他肠道病原体的传播风险也可能上升,如RCP8.5情景下,隐孢子虫病和贾第鞭毛虫病的发病率将在2080年上升约16%[33]。随着未来气温的升高,食源性传染病的风险也会增加,在RCP8.5情景下,预计在2100年欧洲与温度相关的沙门氏菌病年均病例数比仅考虑人口变化的病例数增加50%[34]。
2.2 对非传染性疾病影响的未来预估
气候变化所致的极端温度或复合暴露事件能够引起多种类型的非传染性疾病风险增加。前者的影响具有较大的空间异质性,主要是由气候差异、人口数量、经济水平等多个因素决定。例如在亚热带气候区的研究发现,RCP8.5情景下,到21世纪70年代,心脑血管疾病与热相关的寿命损失相较于基线水平将增加200%,而与冷相关的寿命损失则降低30%,未来数十年每年心脑血管疾病寿命净损失呈现出下降趋势。基于大陆性气候区的研究发现,由于大量人群适应气候变化带来的升温环境,与热相关的心脑血管疾病死亡人数预计会有所减少,但仍高于历史基线期(2007—2009年),而由于人群适应了更高的温度,预计导致与冷相关的心脑血管疾病死亡人数将增加[35]。
在城市化和气候变化的双重作用下,极端温度复合事件中的日夜持续型高温暴露将在全球多个地区以更高的频率和强度发生[36]。但目前有关复合极端温度暴露的研究主要关注于日夜持续型高温事件在全球的分布及其驱动因素,并没有将重点放在对人群健康的影响上。仅有少数研究对气候变化情景下复合极端温度暴露健康影响进行了分析。在中国深圳的研究显示,1.5℃升温情景与2℃升温情景相比,预计到21世纪中期和末期,泌尿系统疾病的归因急救人数将分别增加38%和52%,其次为酒精中毒患者,分别增加20%和36%[37]。
2.3 对精神心理健康影响的未来预估
未来气候变化模式将以多种方式扰乱人类行为和社会生态系统,进而威胁到人群的精神心理健康状况。目前AR6报告主要从定性角度评估未来风险,预计因气候变化导致的极端事件(洪水、干旱和飓风等)增加,会降低幸福感,影响人类心理健康。撒哈拉以南地区非洲儿童和青少年(尤其是女孩)的心理健康和幸福感更容易受到负面影响[38];患有精神障碍、身体残疾以及呼吸、心脑血管和生殖系统受损的人,受到气候变化带来直接影响的风险最大,并会受到饥荒和营养不良、卫生和社会系统的破坏等与气候变化相关的经济和社会问题的间接影响;气候变化可能改变人类活动模式,进而引起心理健康状况的改变,也可通过高温损害劳动能力以及认知功能[39],影响个体家庭和社会经济状况,对精神心理健康造成严重威胁。此外,气候变化造成的人口迁移、流离失所、政治动荡、粮食安全问题等可能加剧未来的心理健康损害。
2.4 对其他气候敏感疾病影响的未来预估
基于不同地理区域以及不同SSPs/RCPs情景组合下的预估结果显示,全球未来人口的高温暴露度将进一步增加。在高人口增长、高排放的SSP3-8.5情景下,人口高温暴露度增幅最大,全球未来暴露于高温热浪的人口将从当前的约1500亿人∙d增加到5350亿人∙d[40]。暴露度主要受热浪发生频率和人口增长趋势的空间差异影响,在地理区域间呈现巨大反差。预计在东亚尤其中国东部地区,热浪频率增加的影响将抵消人口减少的影响,使人群热浪暴露度在未来持续增加,特别是在非城市地区这一现象尤为明显。由于全球升温,未来北半球国家的冷相关死亡率预计有所下降,而南半球气候温暖的国家预计到21世纪末热相关的死亡人数会有较大增加。
气候变化将进一步加剧儿童营养不良的发生率。在RCP2.6情景下,到2030年全球44个国家5岁以下儿童中度和重度发育迟缓预计将增加57万例[41]。气候变化导致的干旱、洪水、风暴、野火和极端温度,通过减少土壤营养、水安全,以及造成生物和遗传多样性丧失等途径,降低粮食生产潜力。预计到2050年,与气候相关的食物尤其是水果和蔬菜供应量的减少可能导致每年52.9万人的超额死亡[42]。在化学污染物暴露方面,气候变化可能会改变区域和地方对人为化学污染物的暴露,海产品被海洋毒素污染的风险将会增加,真菌毒素和黄曲霉毒素可能变得更加流行。
3 应对气候变化健康风险的适应策略
应对气候变化健康风险的适应策略和解决方案,是为了应对已经观测到的或预期发生的气候变化与极端事件,而提出的减少人类健康风险或增强气候恢复力的短期和长期策略与方案,是AR6报告的重点内容。通过积极、及时和有效的气候变化适应,可以减少或避免气候变化给人类健康、福祉以及卫生系统造成的风险[43]。因此,既需要将气候变化适应纳入战略规划、付诸行动和采取具体措施,也需要综合考虑减排措施的健康协同效益,加大投资力度、减少碳排放、建立具有气候恢复力和环境友好的卫生系统及医疗设施。
在制定规划和措施的过程中,重点内容应该包括:将气候变化纳入健康政策、建立气候变化应急准备措施、完善健康信息系统,如气候健康风险监测和早期预警系统、脆弱性评估等;结合疾病病因/病媒生物、社会经济、环境条件等各种因素,制定、改进和不断完善气候变化健康风险的监测预测、早期预警和干预措施,如改善饮用水、正确处置排泄物与废水等;应对热相关疾病及过早死亡,除空调等降温措施和高温预警外,还应考虑通过城市规划和建筑设计等措施以应对高温的长期风险[44];制定气候变化或极端天气对心理健康风险的预防策略、适应方案及灾后应急响应,如洪水后的临时避难所有助于缓解流离失所者的焦虑等[18]。此外,气候变化适应策略还包括开发有效的健康风险预测方法、制定改善空气质量的措施,以及将灾害风险管理纳入公共卫生实践等方面的工作。
在具体的应对行动过程中,基于综合权衡能源安全、空气质量、社会经济、生态系统等其他社会目标,通过优化能源结构、减少温室气体排放[45-46]、投资基础设施建设、加快城市公共交通网络、改善农业可持续生产等途径采取气候行动,实现可持续发展目标[47],同时会产生巨大的健康协同效益。另一方面,需加大对基础设施的投资,包括卫生设施、安全饮用水、清洁电力等,提高对气候变化的适应能力,降低气候相关风险的脆弱性。因此,在减缓气候变化的同时,也为改善人类健康和福祉、促进社会公平提供了重要机会。AR6报告也提出促进可持续发展,实现低碳、繁荣和生态安全的气候恢复力发展路径(CRDP)的重要性。对于医疗卫生服务系统,一方面要提高适应和规划能力,努力实现全民健康覆盖,在气候变化背景下保护并持续改善人群健康;另一方面,医疗卫生系统作为碳排放的主要来源之一,需要对当前的服务模式进行重新设计,卫生从业者也应积极参与到这一过程中[48],减少碳足迹,争取实现医疗卫生系统和服务提供过程的温室气体净零排放,以减缓气候变化并减少与温室气体排放相关的疾病负担[49-50]。此外,对于非医疗卫生系统,则应更广泛地实现可持续发展目标,通过跨部门合作制定促进健康的政策,以解决人类健康和福祉的上游决定因素。
4 主要评估结论
AR5报告已经明确指出人类健康对气候变化非常敏感,而这一观点在AR6报告中得以强化。气候变化对气候敏感疾病、过早死亡、营养不良,以及对精神心理健康、积极情绪、生活满意度的威胁正在增加(很高可信度),尤其是儿童、老人、妇女、残疾人等更易受到气候变化的影响。此外,在所有人类居住的地区,都已观测到极端天气气候事件对人群健康造成的级联风险(很高可信度),并在不同的时间和空间上存在差异。科学界仍面临一些挑战:(1)如何更好地量化除自然因素外的人为因素驱动的气候变化导致的健康影响;(2)在推进公共卫生和气候变化的国家政策制定过程中,需加强相关制度设计的全面性和战略规划的整体性,特别是在实施公共卫生和气候变化战略中一些关键行动的具体推进。
气候变化对未来健康风险的影响程度受多方面因素调节,包括未来的温室气体排放量、人口增长和迁移、城市化进程、土地利用、生物多样性、公共卫生策略与措施,以及气候变化适应能力等。在缺少足够的气候变化适应措施的情况下,预计气候敏感疾病发生率和过早死亡人数将会显著增加(高可信度),到2050年,每年将有超过25万人死于气候变化,其中一半以上的超额死亡率发生在非洲;人口对热浪的暴露度将显著增加(很高可信度),在SSP3-4.5和SSP3-8.5情景下,暴露度预计分别增加16倍和36倍;传染病和非传染病的疾病负担将会显著增加(很高可信度),部分地区疟疾的分布范围将缩小、传播强度将减少,但在撒哈拉以南非洲、亚洲和南美洲等地区可能会存在增加的现象;营养不良、发育迟缓和相关的儿童死亡率(尤其是在非洲和亚洲)将可能增加(高可信度),同时也将进一步威胁精神心理健康(很高可信度),尤其是儿童、青少年和老年人的心理健康状况。但未来的健康风险结果主要取决于气候变化的减缓和适应程度(高可信度)。
世界各国在适应气候变化和促进人群健康方面仍有较大的发展空间。制定气候适应型的发展路径会减少气候变化导致的健康风险,其中包括增加清洁能源的使用以减少温室气体排放,构建具有气候恢复力的城市规划,发展更健康的可持续食物系统,普及医疗保健和社会保障系统,建设大规模、积极的与气候变化适应能力相关的基础设施,积极履行《巴黎协定》《仙台减灾框架》和可持续发展目标等国际协议,加大对健康领域适应气候变化的资金和科研支持等。这些措施如果能够深入结合当地人口特征尤其是特定群体、社区结构以及健康脆弱性等多维度因素,会使健康领域适应气候变化的变革转型更加协调有效,实现健康协同效益最大化。
5 对中国的启示
AR6报告对于中国科学界和政策制定者充分认识和理解气候变化影响健康的程度与范围、机制与路径、未来风险的发展趋势与演变过程,以及适应策略与成本效益等方面都具有重要的启示作用。中国地域辽阔,气候环境差异大,气候变化对公众健康造成的风险范围很广,且受到社会经济发展不平衡以及医疗卫生资源不均等因素的影响,其健康效应存在不同区域上的巨大脆弱性差异。因此,中国需要在国家和地方层面开展气候变化健康风险评估、标准化指南、决策支持工具等工作并形成相应的产品,以指导适应气候变化的公共卫生行动及规划,提升医疗卫生机构的应对能力,增强对突发公共卫生事件的应急准备。
目前,中国虽然开展了较多气象因素与健康的关联性研究,但对于脆弱性、适应性和健康协同效益方面的研究较少。未来,中国有很多地区将面临极端高温、海平面上升、洪涝、干旱、台风等多重风险,这些风险与产业结构转型、城市化和老龄化等相互交织,将会带来更复杂的健康挑战[51]。为了更好地保障中国人群健康,国家和地方亟需针对气候变化的健康影响开展系统全面的科学评估,明确气候变化适应策略和干预措施的有效性和成本效益。医疗卫生机构应通过与气象部门密切合作,在重大疾病的环境监测和早期预警中获得有价值的科研数据。
此外,中国提出“2030年前碳达峰,2060年前碳中和”的“双碳”目标,向世界展现了中国气候治理的雄心。“双碳”目标的实现主要通过产业和能源结构的清洁化调整、低碳绿色生产生活方式的普及以及增加碳汇等手段,此过程会产生巨大的健康协同效益。探索“双碳”目标与人类健康的协同治理机制,将气候变化与环境健康融入“1+N”顶层设计,对于中国应对气候变化、改善公众健康、推进生态文明建设和实现可持续发展都具有十分重要的意义。
参考文献
[1]
IPCC. Climate change 2022: impacts, adaptation and vulnerability[M].
Cambridge:
Cambridge University Press, 2022
[本文引用: 3]
[2]
IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M].
Cambridge:
Cambridge University Press, 2014
[本文引用: 1]
[3]
Wu Y, Huang C.
Climate change and vector-borne diseases in China: a review of evidence and implications for risk management
[J]. Biology, 2022, 11 (3): 370DOI:10.3390/biology11030370 URL [本文引用: 1]
[4]
Phung D, Huang C, Rutherford S, et al.
Climate change, water quality, and water-related diseases in the Mekong Delta basin: a systematic review
[J]. Asia-Pacific Journal of Public Health, 2015, 27 (3): 265-276DOI:10.1177/1010539514565448 PMID:25563349 [本文引用: 1]
Mekong Delta Basin (MDB) is vulnerable to extreme climate and hydrological events. The objectives of this review are to understand of water related health effects exacerbated by climate change and the gaps of knowledge on the relationships between climate conditions, water quality, and water-related diseases in the MDB. The findings indicate that a few studies with qualitative emphases on the relationships between climate and water quality have been conducted in MDB, and they are insufficient to describe the pattern of climate-disease relationship. The diseases caused by chemical contaminants in relation to changes of climate conditions are neglected in MDB. We suggest further studies to examine the influence of short-term variation of climate conditions on water quality and water-related diseases for the purpose of public health and medical prevention, and due to the trans-boundary nature of MDB, developing partnership in data sharing and research collaboration among MDBs countries should be prioritized. © 2015 APJPH.
[5]
Ogden N H, Radojevic M, Wu X, et al.
Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis
[J]. Environmental Health Perspectives, 2014, 122 (6): 631-638DOI:10.1289/ehp.1307799 URL [本文引用: 1]
[6]
Cai W, Zhang C, Suen H P, et al.
The 2020 China report of the Lancet Countdown on health and climate change
[J]. The Lancet Public Health, 2021, 6 (1): 64-81[本文引用: 3]
[7]
Zhang N, Song D, Zhang J, et al.
The impact of the 2016 flood event in Anhui province, China on infectious diarrhea disease: an interrupted time-series study
[J]. Environment International, 2019, 127: 801-809DOI:S0160-4120(19)30040-6 PMID:31051323 [本文引用: 1]
Climate change may bring more frequent and severe floods which will heighten public health problems, including an increased risk of infectious diarrhea in susceptible populations. Affected by heavy rainfall and an El Niño event, a destructive flood occurred in Anhui province, China on 18th June 2016. This study investigates the impact of this severe flood on infectious diarrhea at both city-level and provincial level, and further to identify modifying factor. We obtained information on infectious diarrheal cases during 2013-2017 from the National Disease Surveillance System. An interrupted time-series design was used to estimate effects of the flood event on diarrhea in 16 cities. Then we applied a meta-analysis to estimate the area-level pooled effects of the flood in both flooded areas and non-flooded areas. Finally, a meta-regression was applied to determine whether proximity to flood was a predictor of city-level risks. Stratified analyses by gender and age group were also conducted for flooded areas. A significant increase in infectious diarrhea risk (RR = 1.11, 95% CI: 1.01, 1.23) after the flood event was found in flooded area with variation in risks across cities, while there was no increase in non-flooded areas. Diarrheal risks post-flood was progressively higher in cities with greater proximity to the Yangtze River. Children aged 5-14 were at highest risk of diarrhea post-flood in the flooded areas. Our study provides strong evidence that the 2016 severe flood significantly increased infectious diarrheal risk in exposed populations. Local public health agencies are advised to develop intervention programs to prevent and control infectious diarrhea risk when a major flood occurs, especially in areas close to water bodies and among vulnerable populations.Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
[9]
Zuo S, Yang L, Dou P, et al.
The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in Central China
[J]. Science of The Total Environment, 2021, 764: 144609[本文引用: 1]
[10]
Wang P, Goggins W B, Chan E Y Y.
Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong
[J]. Environment International, 2018, 120: 223-230DOI:S0160-4120(18)30949-8 PMID:30103121 [本文引用: 1]
Little is known about the relationship between Salmonella infection and meteorological parameters other than air temperature. This study aimed to explore associations of Salmonella hospitalizations with temperature, relative humidity (RH) and rainfall.With negative binomial distribution assumed, time-series regression model adjusting for season and time trend were constructed employing distributed lag non-linear models and generalized additive models. Meteorological variables including mean temperature, RH, and daily total rainfall as well as indicator variables including day of the week and public holiday were incorporated in the models.Higher temperature was strongly associated with more hospitalizations over the entire range of temperatures observed. There was a net 6.13 (95%Confidence Interval (CI) 3.52-10.67) relative risk of hospitalization at a temperature of 30.5 °C, relative to 13 °C, lag 0-16 days. Positive associations were found for RH above 60% and rainfall between 0 and 0.14 mm. Extreme high humidity (96%) and trace rainfall (0.02 mm) were associated with 2.06 (95%CI 1.35-3.14), lag 0-17 day, and 1.30 (95%CI 1.01-1.67), lag 0-26 days, relative risks of hospitalizations, relative to 60% and no rain, respectively.High temperatures, high RH and light rainfall are positively associated with Salmonella hospitalizations. The very strong association with temperatures implies that hotter days will lead to increases in Salmonella morbidity in the absence of other changes, and the public health implications of this could be exacerbated by global climate change.Copyright © 2018 Elsevier Ltd. All rights reserved.
[11]
Lam E, Morris D H, Hurt A C, et al.
The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia
[J]. Nature Communications, 2020, 11 (1): 2741DOI:10.1038/s41467-020-16545-6 URL [本文引用: 1]
[12]
Giorgini P, Di Giosia P, Petrarca M, et al.
Climate changes and human health: a review of the effect of environmental stressors on cardiovascular diseases across epidemiology and biological mechanisms
[J]. Current Pharmaceutical Design, 2017, 23 (22): 3247-3261DOI:10.2174/1381612823666170317143248 PMID:28317479 [本文引用: 1]
Climate change is rapidly affecting all the regions of our planet. The most relevant example is global warming, which impacts on the earth's ecosystems, threatening human health. Other effects include extreme variations in temperature and increases in air pollution. These events may negatively impact mortality and morbidity for cardiovascular diseases.In this review, we discuss the main effects of climate changes on cardiovascular diseases, reporting the epidemiological evidences and the biological mechanisms linking climate change consequences to hypertension, diabetes, ischemic heart diseases, heart failure and stroke.Up to now, findings suggest that humans acclimate under different weather conditions, even though extreme temperatures and higher levels of air pollution can influence health-related outcomes. In these cases, climate change adversely affects cardiovascular system and the high-risk subjects for cardiovascular diseases are those more exposed.Finally, we examine climate change implications on publich health and suggest adaptation strategies to monitor the high-risk population, and reduce the amount of hospital admissions associated to these events. Such interventions may minimize the costs of public health and reduce the mortality for cardiovascular diseases.Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
[13]
Navarro K M, Kleinman M T, Mackay C E, et al.
Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality
[J]. Environmental Research, 2019, 173: 462-468DOI:10.1016/j.envres.2019.03.060 URL [本文引用: 1]
[14]
Deng S Z, Bjalaludin B, Manto J, et al.
Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals
[J]. Chinese Medical Journal, 2020, 133 (13): 1552-1560DOI:10.1097/CM9.0000000000000861 URL [本文引用: 1]
[15]
Mulli Ns J, White C.
Temperature and mental health: evidence from the spectrum of mental health outcomes
[J]. IZA Discussion Papers, 2019, 68: 102240[本文引用: 1]
[16]
Obradovich N, Migliorini R, Paulus M P, et al.
Empirical evidence of mental health risks posed by climate change
[J]. Proceedings of The National Academy of Sciences, 2018, 115 (43): 10953-10958DOI:10.1073/pnas.1801528115 URL [本文引用: 2]
[17]
Burke M, González F, Baylis P, et al.
Higher temperatures increase suicide rates in the United States and Mexico
[J]. Nature Climate Change, 2018, 8 (8): 723-729DOI:10.1038/s41558-018-0222-x URL [本文引用: 1]
[18]
Zhong S, Yang L, Toloo S, et al.
The long-term physical and psychological health impacts of flooding: a systematic mapping
[J]. Science of The Total Environment, 2018, 626: 165-194DOI:10.1016/j.scitotenv.2018.01.041 URL [本文引用: 2]
[19]
Schwartz R, Sison C, Kerath S, et al.
The impact of Hurricane Sandy on the mental health of New York area residents
[J]. American Journal of Disaster Medicine, 2015, 10: 339-346DOI:10.5055/ajdm.2015.0216 PMID:27149315 [本文引用: 1]
To evaluate the long-term psychological impact of Hurricane Sandy on New York residents.Prospective, cross-sectional study.Community-based study.From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure).Depression, anxiety, and post-traumatic stress disorder (PTSD).Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues.Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.
[20]
Cunsolo A, Harper S L, Minor K, et al.
Ecological grief and anxiety: the start of a healthy response to climate change?
[J]. The Lancet Planetary Health, 2020, 4 (7): 261-263[本文引用: 1]
[22]
Wang J, Obradovich N, Zheng S.
A 43-million-person investigation into weather and expressed sentiment in a changing climate
[J]. One Earth, 2020, 2 (6): 568-577DOI:10.1016/j.oneear.2020.05.016 URL [本文引用: 1]
[23]
Pecl G T, Araújo M B, Bell J D, et al.
Biodiversity redistribution under climate change: impacts on ecosystems and human well-being
[J]. Science, 2017, 355 (6332): i9214[本文引用: 1]
[24]
Eckstein D, Künzel V, Schäfer L.
Global climate risk index 2018
[R]. Germanwatch eV: Bonn, Germany, 2017[本文引用: 1]
[25]
Ma R, Zhong S, Morabito M, et al.
Estimation of work-related injury and economic burden attributable to heat stress in Guangzhou, China
[J]. Science of The Total Environment, 2019, 666: 147-154DOI:10.1016/j.scitotenv.2019.02.201 URL [本文引用: 1]
[26]
Watts N, Amann M, Arnell N, et al.
The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate
[J]. The Lancet, 2019, 394 (10211): 1836-1878DOI:10.1016/S0140-6736(19)32596-6 URL [本文引用: 1]
[27]
Wang Q, Li B, Benmarhnia T, et al.
Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: a survival analysis
[J]. Environmental Health Perspectives, 2020, 128: 17006DOI:10.1289/EHP5117 URL [本文引用: 1]
[28]
Swinburn B A, Kraak V I, Allender S, et al.
The global syndemic of obesity, undernutrition, and climate change: the Lancet commission report
[J]. The Lancet, 2019, 393 (10173): 791-846DOI:10.1016/S0140-6736(18)32822-8 URL [本文引用: 1]
[29]
Alava J J, Cheung W W L, Ross P S, et al.
Climate change-contaminant interactions in marine food webs: toward a conceptual framework
[J]. Global Change Biology, 2017, 23 (10): 3984-4001DOI:10.1111/gcb.13667 PMID:28212462 [本文引用: 1]
Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.© 2017 John Wiley & Sons Ltd.
[30]
Kraemer M U G, Reiner R C, Brady O J, et al.
Past and future spread of the arbovirus vectors Aedes Aegypti and Aedes Albopictus
[J]. Nature Microbiology, 2019, 4 (5): 854-863DOI:10.1038/s41564-019-0376-y PMID:30833735 [本文引用: 1]
The global population at risk from mosquito-borne diseases-including dengue, yellow fever, chikungunya and Zika-is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally.
[31]
Messina J P, Brady O J, Golding N, et al.
The current and future global distribution and population at risk of Dengue
[J]. Nature Microbiology, 2019, 4 (9): 1508-1515DOI:10.1038/s41564-019-0476-8 PMID:31182801 [本文引用: 1]
Dengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world's population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.
[32]
McCreesh N, Nikulin G, Booth M.
Predicting the effects of climate change on Schistosoma Mansoni transmission in eastern Africa
[J]. Parasites & Vectors, 2015, 8 (1): 4[本文引用: 1]
[33]
Brubacher J, Allen D M, Déry S J, et al.
Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate
[J]. Science of The Total Environment, 2020, 728: 138808[本文引用: 1]
[35]
Zhang B, Li G, Ma Y, et al.
Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change, population, and adaptation scenarios
[J]. Environmental Research, 2018, 162: 152-159DOI:S0013-9351(17)31770-X PMID:29306663 [本文引用: 1]
Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities.Copyright © 2018 Elsevier Inc. All rights reserved.
[36]
Ma F, Yuan X.
Impact of climate and population changes on the increasing exposure to summertime compound hot extremes
[J]. Science of The Total Environment, 2021, 772: 145004[本文引用: 1]
[37]
He Y, Deng S, Ho H C, et al.
The half-degree matters for heat-related health impacts under the 1.5℃ and 2℃warming scenarios: evidence from ambulance data in Shenzhen, China
[J]. Advances in Climate Change Research, 2021, 12 (5): 628-637DOI:10.1016/j.accre.2021.09.001 URL [本文引用: 1]
[39]
Liu X.
Reductions in labor capacity from intensified heat stress in China under future climate change
[J]. International Journal of Environmental Research and Public Health, 2020, 17: 1278DOI:10.3390/ijerph17041278 URL [本文引用: 1]
[40]
Jones B, Tebaldi C, O′Neill B C, et al.
Avoiding population exposure to heat-related extremes: demographic change vs climate change
[J]. Climatic Change, 2018, 146 (3): 423-437DOI:10.1007/s10584-017-2133-7 URL [本文引用: 1]
[41]
Lloyd S, Bangalore M, Chalabi Z, et al.
A global-level model of the potential impacts of climate change on child stunting via income and food price in 2030
[J]. Environmental Health Perspectives, 2018, 126: 97007DOI:10.1289/EHP2916 URL [本文引用: 1]
[42]
Springmann M, Mason-D′Croz D, Robinson S, et al.
Global and regional health effects of future food production under climate change: a modelling study
[J]. The Lancet, 2016, 387 (10031): 1937-1946DOI:10.1016/S0140-6736(15)01156-3 URL [本文引用: 1]
[43]
Ebi K L, Boyer C, Ogden N, et al.
Burning embers: synthesis of the health risks of climate change
[J]. Environmental Research Letters, 2021, 16 (4): 44042DOI:10.1088/1748-9326/abeadd URL [本文引用: 1]
[44]
Jay O, Capon A, Berry P, et al.
Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities
[J]. The Lancet, 2021, 398 (10301): 709-724DOI:10.1016/S0140-6736(21)01209-5 URL [本文引用: 1]
[45]
Willett W, Rockström J, Loken B, et al.
Food in the Anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems
[J]. The Lancet, 2019, 393 (10170): 447-492DOI:10.1016/S0140-6736(18)31788-4 URL [本文引用: 1]
[46]
Schucht S, Colette A, Rao S, et al.
Moving towards ambitious climate policies: monetised health benefits from improved air quality could offset mitigation costs in Europe
[J]. Environmental Science & Policy, 2015, 50: 252-269[本文引用: 1]
[47]
Campagnolo L, Davide M.
Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality
[J]. World Development, 2019, 122: 96-109DOI:10.1016/j.worlddev.2019.05.015 [本文引用: 1]
The paper investigates potential synergies and trade-offs between emission reduction policies and sustainable development objectives. Specifically, it provides an ex-ante assessment that the impacts of the Nationally Determined Contributions (NDCs), submitted under the Paris Agreement, will have on the Sustainable Development Goals (SDGs) of poverty eradication (SDG1) and reduced income inequality (SDG10). Through this research we aim at answering the following questions: does mitigation policy always imply a trade-off with development objectives? If this is the case, what is the magnitude of the effect of the new international climate architecture on poverty and inequality? By combining an empirical analysis with a modelling exercise, the paper estimates the future trends of poverty prevalence and inequality across countries in a reference scenario and under a climate mitigation policy with alternative revenue recycling schemes. Our study finds that a full implementation of the emission reduction contributions, stated in the NDCs, is projected to slow down the effort to reduce poverty by 2030 (+4.2% of the population below the poverty line compared to the baseline scenario), especially in countries that have proposed relatively more stringent mitigation targets and suffer higher policy costs. Conversely, the impact of climate policy on inequality shows opposite sign but remains very limited. If financial support for mitigation action in developing countries is provided through an international climate fund, the prevalence of poverty will be slightly reduced at the aggregate level, but the country-specific effect depends on the relative size of funds flowing to beneficiary countries and on their economic structure. The output of our analysis contributes to the emerging literature on the linkages between climate change policy and sustainable development, although we capture only partially the complex system of interrelations and feedbacks proper of the SDGs. Moreover, due to its policy relevance, it further enriches the debate on the implementation of the Paris Agreement and its climate finance tools. (C) 2019 Elsevier Ltd.
[48]
Charlesworth K E, Jamieson M.
Healthcare in a carbon-constrained world
[J]. Australian Health Review: A Publication of The Australian Hospital Association, 2019, 43 (3): 241-245DOI:10.1071/AH17184 URL [本文引用: 1]
[49]
Charlesworth K, Stewart G, Sainsbury P.
Addressing the carbon footprint of health organisations: eight lessons for implementation
[J]. Public Health Research & Practice, 2018, 28 (4): e2841830[本文引用: 1]
[50]
Frumkin H.
The US health care sector’s carbon footprint: stomping or treading lightly?
[J]. American Journal of Public Health, 2017, 108 (S2): S56-S57[本文引用: 1]
[51]
钟爽, 黄存瑞.
气候变化的健康风险与卫生应对
[J]. 科学通报, 2019, 64 (19): 2002-2010.[本文引用: 1]
Zhong S, Huang C.
Climate change and human health: risks and responses
[J]. Chinese Science Bulletin, 2019, 64 (19): 2002-2010 (in Chinese)[本文引用: 1]
相关知识
气候变化对人类健康影响的研究:IPCC AR6 WGⅡ的解读
气候变化与健康
报告:建议以健康驱动空气污染和气候变化协同治理
热浪、洪水、野火如何威胁中国人的健康|《柳叶刀》报告
多权威机构联合发布报告:以健康驱动空气污染与气候变化协同治理
报告:建议以健康驱动空气污染和气候变化协同治理—新闻—科学网
气候变化带来健康风险,我们如何应对
联合国最新报告:全球气候变化或将导致超级细菌增加
大数据解读深圳人健康报告
健康体检报告解读PPT课件.pptx
网址: IPCC AR6报告解读:气候变化与人类健康 https://www.trfsz.com/newsview239017.html
推荐资讯
- 1男女激情后不宜做哪些事 3842
- 2从出汗看健康 出汗透露你的健 3826
- 3早上怎么喝水最健康? 3623
- 4习惯造就健康 影响健康的习惯 3277
- 5五大原因危害女性健康 如何保 3177
- 6连花清瘟、布洛芬等多款感冒药 2953
- 7男子喝水喉咙里像放了刀子一样 2451
- 810人混检核酸几天出结果?1 2221
- 9第二轮新冠疫情要来了?疾控中 2215
- 10转阴多久没有传染性?满足四个 2159