首页 资讯 机器学习技术在环境健康领域中的应用进展

机器学习技术在环境健康领域中的应用进展

来源:泰然健康网 时间:2024年11月23日 01:29

摘要   随着环境和健康研究数据共享及可用性的不断提升,涉及环境与人体健康的数据集数量急剧增加。然而,这些环境健康大型数据集多样且复杂,传统的流行病学和环境健康模型难以有效分析,因此催生了一个环境健康研究的新手段。人工智能(AI)技术在环境健康领域的应用正迅速发展,为新污染物筛选和毒性预测、生物监测、风险评估和健康保护提供了新颖且强大的工具。其中,先进的机器学习(ML)算法能够揭示人类难以察觉的规律,在生物标志物识别、疾病预防和环境工程优化等方面表现出重要潜力,为环境健康研究和技术创新提供新的思路和突破口。然而,ML技术在环境健康领域的应用仍面临数据质量、模型解释性以及跨学科合作等挑战。本文将综述ML技术在环境健康领域的最新应用进展,探讨其优势、挑战以及未来的发展方向,以期为环境保护和公共健康领域的研究和实践提供有价值的参考。

Abstract   As the data sharing and availability in environmental and health research continue to improve, the number of large datasets for environmental and human health has increased dramatically. However, these large environmental health datasets are diverse and complex, and traditional epidemiological and environmental health models are difficult to effectively analyze, leading to the development of a new approach to environmental health research. The application of artificial intelligence (AI) technology in environmental health is rapidly developing, providing novel and powerful tools for new pollutant screening and toxicity prediction, biomonitoring, risk assessment, and health protection. Among them, advanced machine learning (ML) algorithms can reveal laws that are difficult for humans to detect, showing important potential in biomarker identification, disease prevention, and environmental engineering optimization. This can provide new ideas and breakthroughs for environmental health research and technological innovation. However, the application of ML technology in the field of environmental health still faces challenges such as data quality, model interpretability, and interdisciplinary cooperation. This paper will review the latest progress in the application of ML technology in the field of environmental health, discuss its advantages, challenges, and future development directions, with the aim of providing valuable references for research and practice in the fields of environmental protection and public health.

[1] 江桂斌, 宋茂勇. 环境暴露与健康效应[M]. 北京:科学出版社, 2020. [2] 刘静怡, 孟聪申, 韩京秀. 1990—2019年全球环境危险因素疾病负担—GBD2019数据再分析[J]. 环境卫生学杂志, 2023, 13(3): 170-176. [3] 支梦雪, 王建设. 暴露组学在识别环境污染物及其健康危害中的应用进展[J]. 色谱, 2024, 42(2): 142-149. [4] 李立明, 王波, 吕筠, 等. 我国公共卫生科技创新的现状与挑战[J]. 中国科学基金, 2024, 38(2): 303-307. [5]

HANDELMAN G S, KOK H K, CHANDRA R V, et al. eD octor: machine learning and the future of medicine[J]. Journal of Internal Medicine, 2018, 284(6): 603-619.

[6]

LIU B, DING M, SHAHAM S, et al. When machine learning meets privacy: a survey and outlook[J]. ACM computing surveys, 2022, 54(2): 1-36.

[7]

DONG S, WANG P, ABBAS K. A survey on deep learning and its applications[J]. Computer science review, 2021, 40: 100379.

[8]

ALZUBAIDI L, ZHANG J, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of big data, 2021, 8(1): 53.

[9] 郑玉新. 暴露评估与暴露组研究——探索环境与健康的重要基础[J]. 中华预防医学杂志, 2013, 47(2): 99-100. [10] 孟甜, 曹莹, 刘晓雪, 等. 环境应急监测技术研究进展与展望[J]. 环境保护, 2023, 14(51): 34-39. [11]

MAGI E, DI CARRO M. Marine environment pollution: The contribution of mass spectrometry to the study of seawater[J].Mass spectrometry reviews,2018, 37(4): 492-512.

[12] 李艳, 吴欣宜, 王全龙, 等. 机器学习辅助光谱分析技术在环境微/纳塑料研究中的应用[J]. 中国无机分析化学, 2024, 14(8): 1137-1146. [13]

ZHAO Q M, YU Y, GAO Y C, et al. Machine learningbased models with high accuracy and broad applicability domains for screening PMT/vPvM substances[J]. Environmental Science & Technology, 2022, 56(24): 17880- 17889.

[14]

SUN X, ZHANG X, MUIR D C G, et al. Identification of potential PBT/POP-like chemicals by a deep learning approach based on 2D structural features[J]. Environmental science & technology, 2020, 54(13): 8221-8231.

[15]

TIAN X, BEÉN F, BÄUERLEIN P S. Quantum cascade laser imaging (LDIR) and machine learning for the identification of environmentally exposed microplastics and polymers[J]. Environmental research, 2022, 212: 113569.

[16]

LI R Y, YAN C Q, MENG Q P, et al. Key toxic components and sources affecting oxidative potential of atmospheric particulate matter using interpretable machine learning: Insights from fog episodes[J]. Journal of hazardous materials, 2024, 465: 133175.

[17]

DENG F C, QIN G Q, CHEN Y Y, et al. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats[J]. Journal of hazardous materials, 2023, 457: 131760.

[18]

LI Z L, WANG J, YUE H, et al. Applying metabolic modeling and multi-omics to elucidate the biotransformation mechanisms of marine algal toxin domoic acid (DA) in sediments[J]. Journal of hazardous materials, 2024, 472:134541.

[19]

PARK Y J, RAHMAN M S, PANG W K, et al. Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure[J]. Environmental pollution, 2022, 308: 119590.

[20]

REEL P S, REEL S, PEARSON E, et al. Using machine learning approaches for multi-omics data analysis: A review[J]. Biotechnology advances, 2021, 49: 107739.

[21]

LI R F, LI L X, XU Y G, et al. Machine learning meets omics: applications and perspectives[J]. Briefings in Bioinformatics, 2022, 23(1): bbab460.

[22]

GUO W J, LIU J, DONG F, et al. Review of machine learning and deep learning models for toxicity prediction [J]. Experimental biology and medicine, 2023: 15353702231209421.

[23]

PENG T, WEI C H, YU F B, et al. Predicting nanotoxicity by an integrated machine learning and metabolomics approach[J]. Environmental pollution, 2020, 267: 115434.

[24]

SU Z K, ZHANG Y L, HONG S Y, et al. Immune regulation patterns in response to environmental pollutant chromate exposure-related genetic damage: a cross-sectional study applying machine learning methods[J]. Environmental science & technology, 2024, 58(17): 7279-7290.

[25]

LUAN H. Machine learning for screening active metabolites with metabolomics in environmental science[J]. Environmental science: advances, 2022, 1(5): 605-611.

[26]

LI L, CHING W K, LIU Z P. Robust biomarker screening from gene expression data by stable machine learningrecursive feature elimination methods[J]. Computational biology and chemistry, 2022, 100: 107747.

[27]

TORUN F M, VIRREIRA WINTER S, DOLL S, et al. Transparent exploration of machine learning for biomarker discovery from proteomics and omics data[J]. Journal of proteome research, 2023, 22(2): 359-367.

[28]

WEI X R, TANG X W, LIU N, et al. PyCoCa: A quantifying tool of carbon content in airway macrophage for assessment the internal dose of particles[J]. Science of the total environment, 2022, 851(Part 1): 158103.

[29] 胡贵平, 陈章健, 唐仕川, 等. 生物监测在暴露组评价中的应用[J]. 中华预防医学杂志, 2018, 52(2): 945-948. [30]

LIU X, LU D W, ZHANG A Q, et al. Data-driven machine learning in environmental pollution: gains and problems [J]. Environmental science & technology, 2022, 56(4): 2124-2133.

[31] 姚絮. 环境重金属联合暴露评价及其对重要健康结局的影响[D]. 合肥:安徽医科大学, 2023. [32] 张俊鸿, 闫馨, 张俊. 空气污染与人体健康的关系[J]. 山西医药杂志, 2021, 50(24): 3339-3341. [33]

BOBB J F, VALERI L, CLAUS H B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures[J]. Biostatistics, 2015, 16(3): 493-508.

[34]

MÉNDEZ M,MERAYO M G, NÚÑEZ M. Machine learning algorithms to forecast air quality: a survey[J]. Artificial intelligence review, 2023, 56(9): 10031-10066.

[35]

DU S D, LI T R, YANG Y, et al. Deep air quality forecasting using hybrid deep learning framework[J]. IEEE transactions on knowledge and data engineering, 2021, 33(6): 2412-2424.

[36]

MA J, CHENG J C P, LIN C, et al. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques[J]. Atmospheric environment, 2019, 214: 116885.

[37] 张宇, 万爽, 向准, 等. 基于环境气象因素的机器学习模型预测呼吸系统疾病急诊量[J]. 中国数字医学, 2023, 18(7): 40-45. [38]

KONTOS Y N, KASSANDROS T, PERIFANOS K, et al. Machine learning for groundwater pollution source identification and monitoring network optimization[J]. Neural computing and applications, 2022, 34(22): 19515-19545.

相关知识

FESE  朱彤院士:中国环境健康研究展望—论文—科学网
《3—6岁儿童学习与发展指南》中健康领域的目标解读
走进健康4.0:医疗健康领域的数字化革新之路
深耕健康领域 三星以先进技术开启智能穿戴健康新时代
用于健康与健身应用的传感器技术
北京大学公共卫生学院成功举办“环境健康与美好生活”学术论坛
热烈庆祝北京大学“环境健康系”成立!
尖端技术+临床实践=堪培拉大学医学健康学院
桂阳县卫生健康局构建医疗服务领域信用联合奖惩机制,优化营商环境
智慧赋能健康 科技引领发展

网址: 机器学习技术在环境健康领域中的应用进展 https://www.trfsz.com/newsview30758.html

推荐资讯