首页 资讯 基于互联网大数据的传染病预测预警研究进展

基于互联网大数据的传染病预测预警研究进展

来源:泰然健康网 时间:2024年11月24日 21:50

摘要: 传染病严重威胁人类生命健康,对其进行早期预测预警是防控传染病的关键。利用传统方法对传染病进行预警已不能满足当前传染病疫情早期预警的需求。随着大数据时代的到来,基于互联网大数据的传染病预测预警技术研究成为研究热点。本文结合案例,对基于互联网大数据的传染病预测预警方法和模型最新研究进展进行综述,旨在为公共卫生相关领域的研究人员提供参考。

关键词: 传染病  /  大数据  /  预测  /  预警  

Abstract: Infectious disease epidemics are a serious threat to human life and health. The prediction and early warning of infectious disease epidemics are the keys to the prevention of infectious diseases. The early warning of infectious disease epidemics based on traditional methods cannot meet the needs of current early warning of infectious disease epidemics. With the construction and application of big data, the researche on infectious disease epidemic prediction and early warning technology based on internet big data has become one of research hot spots. In this study, we reviewed internet big data based methods and models for the prediction and early warning of infectious disease epidemic from a technical point of view for providing references to researchers engaged in the field.

[1]

Heymann DL, Rodier GR. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases[J]. The Lancet Infectious Diseases, 2001, 1(5): 345 – 353. DOI: 10.1016/S1473-3099(01)00148-7

[2]

Grein TW, Kamara KB, Rodier G, et al. Rumors of disease in the global village: outbreak verification[J]. Emerging Infectious Diseases, 2000, 6(2): 97 – 102. DOI: 10.3201/eid0602.000201

[3]

George DB, Taylor W, Shaman J, et al. Technology to advance infectious disease forecasting for outbreak management[J]. Nature Communications, 2019, 10(1): 3932. DOI: 10.1038/s41467-019-11901-7

[4] 余艳妮, 聂绍发, 廖青, 等. 传染病预测及模型选择研究进展[J]. 公共卫生与预防医学, 2018, 29(5): 89 – 92. [5]

Graham-Rowe D. Big data: the next Google[J]. Nature, 2008, 455(7209): 8 – 9. DOI: 10.1038/455008a

[6] 王妍, 王婉婷. 互联网大数据时代背景下大学生碎片化学习的策略研究[J]. 中国信息化, 2021(6): 71 – 72. DOI: 10.3969/j.issn.1672-5158.2021.06.030 [7]

De Mauro A, Greco M, Grimaldi M. What is big data? A consensual definition and a review of key research topics[J]. AIP Conference Proceedings, 2015, 1644(1): 97 – 104.

[8] 刘长娜, 刘军, 韩冬. 传染病监测与监测大数据应用的研究进展[J]. 职业与健康, 2021, 37(6): 844 – 846, 850. [9]

France SL, Shi YY, Kazandjian B. Web Trends: a valuable tool for business research[J]. Journal of Business Research, 2021, 132: 666 – 679. DOI: 10.1016/j.jbusres.2020.10.019

[10]

Peiris JSM, Tu WW, Yen HL. A novel H1N1 virus causes the first pandemic of the 21st century[J]. European Journal of Immunology, 2009, 39(11): 2946 – 2954. DOI: 10.1002/eji.200939911

[11]

Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232): 1012 – 1014. DOI: 10.1038/nature07634

[12]

Olson DR, Konty KJ, Paladini M, et al. Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales[J]. PLoS Computational Biology, 2013, 9(10): e1003256. DOI: 10.1371/journal.pcbi.1003256

[13]

Butler D. When Google got flu wrong[J]. Nature, 2013, 494(7436): 155 – 156. DOI: 10.1038/494155a

[14]

Cook S, Conrad C, Fowlkes AL, et al. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic[J]. PLoS One, 2011, 6(8): e23610. DOI: 10.1371/journal.pone.0023610

[15]

Doornik JA. Improving the timeliness of data on influenza-like illnesses using Google search data[A]. 8th OxMetrics User Con-ference[C]. Washington, D.C.: George Washington University, 2010.

[16]

Kandula S, Shaman J. Reappraising the utility of Google flu trends[J]. PLoS Computational Biology, 2019, 15(8): e1007258. DOI: 10.1371/journal.pcbi.1007258

[17] 董晓春, 李琳, 徐文体, 等. 特定关键词及百度指数与流感病毒活动相关性分析[J]. 中国公共卫生, 2016, 32(11): 1543 – 1546. DOI: 10.11847/zgggws2016-32-11-25 [18] 白宁, 郁磊, 靳祯. 基于百度指数的人感染H7N9禽流感疫情预测[J]. 公共卫生与预防医学, 2018, 29(6): 8 – 12. [19]

Bu Y, Bai JH, Chen Z, et al. The study on China′s flu prediction model based on web search data[J]. Journal of Data Analysis and Information Processing, 2018, 6(3): 79 – 92. DOI: 10.4236/jdaip.2018.63006

[20]

Guo P, Zhang JJ, Wang L, et al. Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model[J]. Scientific Reports, 2017, 7: 46469. DOI: 10.1038/srep46469

[21]

Collier N, Son NT, Nguyen NM. OMG U got flu? Analysis of shared health messages for bio-surveillance[J]. Journal of Biomedical Semantics, 2011, 2(5): S9.

[22]

Kurian SJ, Bhatti AUR, Alvi MA, et al. Correlations between COVID-19 cases and Google trends data in the United States: a state-by-state analysis[J]. Mayo Clinic Proceedings, 2020, 95(11): 2370 – 2381. DOI: 10.1016/j.mayocp.2020.08.022

[23]

Yuan XL, Xu J, Hussain S, et al. Trends and prediction in daily new cases and deaths of COVID-19 in the United States: an internet search-interest based model[J]. Exploratory Research and Hypothesis in Medicine, 2020, 5(2): 41 – 46.

[24]

Jimenez AJ, Estevez-Reboredo RM, Santed MA, et al. COVID-19 symptom-related Google searches and local COVID-19 incidence in Spain: correlational study[J]. Journal of Medical Internet Research, 2020, 22(12): e23518. DOI: 10.2196/23518

[25]

Li CL, Chen LJ, Chen XY, et al. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020[J]. Eurosurveillance, 2020, 25(10): 2000199.

[26]

Brownstein JS, Freifeld CC. HealthMap: the development of auto-mated real-time internet surveillance for epidemic intelligence[J]. Weekly Releases (1997 – 2007), 2007, 12(48): 3322.

[27]

Cho A. AI systems aim to sniff out coronavirus outbreaks[J]. Science, 2020, 368(6493): 810 – 811. DOI: 10.1126/science.368.6493.810

[28]

Chan EH, Sahai V, Conrad C, et al. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance[J]. PLoS Neglected Tropical Diseases, 2011, 5(5): e1206. DOI: 10.1371/journal.pntd.0001206

[29]

Althouse BM, Ng YY, Cummings DAT. Prediction of dengue incidence using search query surveillance[J]. PLoS Neglected Tropical Diseases, 2011, 5(8): e1258. DOI: 10.1371/journal.pntd.0001258

[30]

Li ZH, Liu T, Zhu GH, et al. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: a case study in Guangzhou, China[J]. PLoS Neglected Tropical Diseases, 2017, 11(3): e0005354. DOI: 10.1371/journal.pntd.0005354

[31]

Wang J, Jiang LN, Zhang C, et al. The changes in the epidemiology of hand, foot, and mouth disease after the introduction of the EV-A71 vaccine[J]. Vaccine, 2021, 39(25): 3319 – 3323. DOI: 10.1016/j.vaccine.2021.05.009

[32]

Yang Z, Xu QN, Chen YP, et al. Using Baidu index to nowcast hand-foot-mouth disease in China: a meta learning approach[J]. BMC Infectious Diseases, 2018, 18(1): 398. DOI: 10.1186/s12879-018-3285-4

[33]

Atmar RL, Ramani S. Birth cohort studies: toward understanding protective immunity to human noroviruses[J]. Clinical Infectious Diseases, 2021, 72(2): 230 – 232. DOI: 10.1093/cid/ciaa025

[34] 吴昊澄, 吴晨, 鲁琴宝, 等. 基于百度指数的诺如病毒感染暴发疫情预警研究[J/OL]. 中国预防医学杂志: 1 – 5[2021 – 07 – 09]. http://kns.cnki.net/kcms/detail/11.4529.R.20210329.1731.002.html. [35]

Shin SY, Seo DW, An J, et al. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea[J]. Scientific Reports, 2016, 6: 32920. DOI: 10.1038/srep32920

[36]

Milinovich GJ, Magalhães RJS, Hu WB. Role of big data in the early detection of Ebola and other emerging infectious diseases[J]. The Lancet Global Health, 2015, 3(1): e20 – e21. DOI: 10.1016/S2214-109X(14)70356-0

[37]

McGough SF, Brownstein JS, Hawkins JB, et al. Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data[J]. PLoS Neglected Tropical Diseases, 2017, 11(1): e0005295. DOI: 10.1371/journal.pntd.0005295

[38]

Milinovich GJ, Avril SMR, Clements ACA, et al. Using internet search queries for infectious disease surveillance: screening diseases for suitability[J]. BMC Infectious Diseases, 2014, 14: 690. DOI: 10.1186/s12879-014-0690-1

相关知识

国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见
2021年中国互联网女性健康管理行业市场消费规模研究预测及未来市场发展建议分析
关于深入推进“互联网+医疗健康”“五个一”服务行动的通知
研究进展
环境污染与先天性心脏病的研究进展
中国健康医疗大数据研究综述——基于期刊论文的分析
桥梁健康监测数据分析研究综述.pdf
健康数据分析与预测
国家健康医疗大数据研究院落户宁夏
基于健康数据采集的健康大数据分析.pptx

网址: 基于互联网大数据的传染病预测预警研究进展 https://www.trfsz.com/newsview65064.html

推荐资讯