中国生物肥料与有机肥料研究三十年:回顾与展望
摘要:
生物肥料与有机肥料是环境友好的绿色肥料,在培肥耕地、改良土壤、提高农产品品质中发挥重要作用,是支撑农业绿色发展、保障国家粮食安全的重要投入品。自20世纪中叶,我国化肥工业的快速发展为促进粮食持续增产提供了充足的无机养分;到20世纪90年代,我国肥料投入中化肥占比达到最高,有机肥料等的施用相应降至最低。对化肥的依赖导致了耕地质量退化、农田环境污染、农产品质量下降等一系列问题,严重影响了我国耕地的可持续利用和农业可持续发展,因此我国加大了对生物肥料与有机肥料的研究。三十年来,我国生物肥料与有机肥料在基础研究、应用研究和产业化方面都取得了日新月异的进展。我国的生物肥料研究从最初的根瘤菌等固氮功能逐步扩展到溶磷解钾等活化养分功能,进一步发展到消减土壤障碍与增强作物抗逆等非养分功能;从单一菌种发展到多菌种及合成菌群,产品类型从单纯的菌剂发展到生物有机肥和复合微生物肥料,产业规模和技术水平显著提升。有机肥料研究从关注堆肥过程中的有机养分转化到提高堆肥效率的技术工艺和有害因子的消除与阻控等。近年来,在“双碳”战略背景下,清洁低碳堆肥以及通过施用有机肥快速提升土壤有机质、增加土壤固碳成为新的研究热点。本文对过去三十年我国生物肥料与有机肥料研究重点、代表性成绩、产业化路径等进行了全面回顾和总结,新形势下国家农业发展重大战略需求以及科技的突破仍将支撑生物肥料和有机肥的快速发展,由此提出了未来的一些研究重点。
Abstract:
Biofertilizer and organic fertilizer are attributed to environmental-friendly green fertilizers because of their beneficial roles in improving farmland fertility and agricultural product quality, therefore, the application of biofertilizer and organic fertilizer are the key measurements for the green development of agriculture and the food security. The fast development of chemical fertilizer industry since the middle of last century provides substantial and cheap inorganic fertilizers for the sustained yield increasing. The proportion of chemical fertilizer in China’s total nutrient input reached the peak, and the application of organic fertilizer went to the lowest in 1990s. The heavily relay on chemical fertilizer has caused a series of shortcomings, like the deterioration of farmland quality, the contamination of farmland and environment, and the decline of agricultural product quality, threatens the sustainable use of farmland and development of agriculture seriously. Thereby, Chinese government strengthens the research and policy support to biofertilizer and organic fertilizer, and great progresses have been made in the basic and applied research and industrialization of biofertilizer and organic fertilizer during the past thirty years. The biofertilizer function research in China has expanded from increasing nitrogen-fixation efficiency to phosphorus and potassium solubilization, and further developed to soil barrier reduction and crop stress resistance enhancement; biofertilizer products containing single strain have been replaced by those containing multi-strains and synthetic flora. And the product types have developed from simple bacteriotics to biofertilizers and composite microbial fertilizers. The industrial scale and technological level of biofertilizer production have been improved significantly. Organic fertilizer researches not only focus on the conversion of organic nutrients during composting process but also on the technologies improving the composting efficiency and the elimination and control of harmful factors. Under the background of “two-carbon” strategy in recent years, new hotspots have turned out on researching and application of clean and low-carbon organic fertilizers are required to rapidly improve soil organic matter content and carbon sequestration capacity. We reviewed the related research emphasis, representative achievements and the industrialization paths of biofertilizer and organic fertilizer in China for the past 30 years. The requirement of national strategy and the scientific breakthroughs will continue to support the development of biofertilizer and organic fertilizer under the new situation, and some research emphases are thus proposed in near future.
图 1 我国70年来化肥和有机肥养分投入比例变化
Figure 1. The nutrient ratio from chemical and organic fertilizers in the past 70 years in China
[1] 陈华葵. 微生物和土壤的实效肥沃性[J]. 中国农业科学, 1953, (5): 214−217.Chen H K. Microbial and edaphic effective fertility[J]. Agricultural Science in China, 1953, (5): 214−217.
[2]Singh M, Singh D, Gupta A, et al. Plant growth promoting rhizobacteria: Application in biofertilizers and biocontrol of phytopathogens[A]. Singh A K, Kumar A, Singh P K. PGPR amelioration in sustainable agriculture: Food security and environmental management[M]. Cambridge, MA: Elsevier, 2019.
[3] 李季伦. 我国生物固氮研究的现状和对策: 科技进步与学科发展[A]. “科学技术面向新世纪”学术年会论文集[C]. 北京: 中国科学技术协会, 1998.Li J L. Research status and countermeasures of biological nitrogen fixation in China : Scientific and technological progress and discipline development[A]. Proceeding of the annual conference “Science and Technology Facing the New Century”[C]. Beijing: China Association for Science and Technology, 1998.
[4] 樊庆笙. 固氮微生物学[M]. 北京: 农业出版社, 1993.Fan Q S. Microbiology of nitrogen fixation[M]. Beijing: Beijing Agriculture Press, 1993.
[5] 李俊, 姜昕, 马鸣超, 等. 我国微生物肥料产业需求与技术创新[J]. 中国土壤与肥料, 2019, (2): 1−5. DOI: 10.11838/sfsc.1673-6257.19029Li J, Jiang X, Ma M C, et al. Development demand and technical innovation for bio-fertilizer industry in China[J]. Soil and Fertilizer Sciences in China, 2019, (2): 1−5. DOI: 10.11838/sfsc.1673-6257.19029
[6] 沈德龙, 李俊, 姜昕. 我国微生物肥料产业现状及发展方向[J]. 中国农业信息, 2014, (18): 41−43. DOI: 10.3969/j.issn.1672-0423.2014.09.015Shen D L, Li J, Jiang X. Current situation and development direction of microbial fertilizer industry in China[J]. China Agricultural Information, 2014, (18): 41−43. DOI: 10.3969/j.issn.1672-0423.2014.09.015
[7] 沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系[J]. 南京农业大学学报, 1992, 15(1): 59−64.Shen Q R, Shen Z G, Shi R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composition of organic manure[J]. Journal of Nanjing Agricultural University, 1992, 15(1): 59−64.
[8] 沈其荣, 余玲, 刘兆普, 茆泽圣. 有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响[J]. 土壤学报, 1994, 31(3): 287−294. DOI: 10.3321/j.issn:0564-3929.1994.03.004Shen Q R, Yu L, Liu Z P, Mao Z S. Effects of combining application of organic and inorganic nitrogen fertilizers on biomass nitrogen and nitrogen-supplying characterstics of coastal saline soil[J]. Acta Pedologica Sinica, 1994, 31(3): 287−294. DOI: 10.3321/j.issn:0564-3929.1994.03.004
[9] 沈其荣, 徐慧, 徐盛荣, 曹翠玉. 有机—无机肥料养分在水田土壤中的转化[J]. 土壤通报, 1994, 25(7): 11−15.Shen Q R, Xu H, Xu S R, Cao C Y. Conversion of organic-inorganic fertilizer nutrients in paddy soil[J]. Chinese Journal of Soil Science, 1994, 25(7): 11−15.
[10] 王岩, 沈其荣, 史瑞和, 黄东迈. 有机、无机肥料施用后土壤生物量C、N、P的变化及N素转化[J]. 土壤学报, 1998, 35(2): 227−234. DOI: 10.3321/j.issn:0564-3929.1998.02.011Wang Y, Shen Q R, Shi R H, Huang D M. Changes of soil microbial biomass C, N and P and the N transformation after application of organic and inorganic fertilizers[J]. Acta Pedologica Sinica, 1998, 35(2): 227−234. DOI: 10.3321/j.issn:0564-3929.1998.02.011
[11] 沈其荣, 殷士学, 杨超光, 陈巍. 13C标记技术在土壤和植物营养研究中的应用[J]. 植物营养与肥料学报, 2000, 6(1): 98–105.Shen Q R, Yin S X, Yang C G, Chen W. Application of 13C labeling technique to soil science and plant nutrition[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(1): 98−105.
[12] 沈中泉, 袁家富. 商品性有机肥料工厂化生产研究动态[J]. 植物营养与肥料学报, 1998, 4(2): 117−122. DOI: 10.3321/j.issn:1008-505X.1998.02.004Shen Z Q, Yuan J F. Study on industrial process on commercial organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 1998, 4(2): 117−122. DOI: 10.3321/j.issn:1008-505X.1998.02.004
[13] 张铭, 蔡鹏, 吴一超, 等. 细菌胞外聚合物: 基于土壤生态功能的视角[J]. 土壤学报, 2022, 59(2): 308−323. DOI: 10.11766/trxb202107310271Zhang M, Cai P, Wu Y C, et al. Bacterial extracellular polymeric substances: From the perspective of soil ecological functions[J]. Acta Pedologica Sinica, 2022, 59(2): 308−323. DOI: 10.11766/trxb202107310271
[14]Gauri S S, Mandal S M, Pati B R. Impact of Azotobacter exo-polysaccharides on sustainable agriculture[J]. Applied Microbiology Biotechnology, 2012, 95(2): 331−338. DOI: 10.1007/s00253-012-4159-0
[15]Lee S M, Kong H G, Song G C, Ryu C M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15(1): 330−347.
[16] 沈其荣. 中国有机(类)肥料[M]. 北京: 中国农业出版社, 2021.Shen Q R. Organic-based fertilizer in China[M]. Beijing: China Agriculture Press, 2021.
[17] 沈其荣, 刘东阳, 杨兴明, 等. 农业废弃物的快速堆肥菌剂及其生产有机肥的方法: CN200910233577.6[P]. 2010−04−21.Shen Q R, Liu D Y, Yang X M, et al. Rapid composting agent for agricultural waste and method for producing organic fertilizer: CN200910233577.6[P]. 2010−04−21.
[18] 郑利杰, 王波. 我国商品有机肥发展瓶颈及策略研究[J]. 环境与可持续发展, 2017, 42(3): 38−41. DOI: 10.3969/j.issn.1673-288X.2017.03.008Zheng L J, Wang B. Research on development bottleneck of commercial organic fertilizer in China[J]. Environment and Sustainable Development, 2017, 42(3): 38−41. DOI: 10.3969/j.issn.1673-288X.2017.03.008
[19] 符纯华, 单国芳. 我国有机肥产业发展与市场展望[J]. 化肥工业, 2017, 44(1): 9−13. DOI: 10.3969/j.issn.1006-7779.2017.01.003Fu C H, Shan G F. Development of organic fertilizer undustry in China and market outlook[J]. Chemical Fertilizer Industry, 2017, 44(1): 9−13. DOI: 10.3969/j.issn.1006-7779.2017.01.003
[20] 杨帆, 李荣, 崔勇, 段英华. 我国有机肥料资源利用现状与发展建议[J]. 中国土壤与肥料, 2010, (4): 77−82. DOI: 10.3969/j.issn.1673-6257.2010.04.017Yang F, Li R, Cui Y, Duan Y H. Utilization and development strtegy of organic fertilizer resources in China[J]. Soil and Fertilizer Sciences in China, 2010, (4): 77−82. DOI: 10.3969/j.issn.1673-6257.2010.04.017
[21] 李季, 彭生平. 堆肥工程实用手册[M]. 北京: 化学工业出版社, 2011.Li J, Peng S P. Practical manual for composting engineering[M]. Beijing: Chemical Industry Press, 2011.
[22] 孙晓华, 罗安程, 仇丹. 微生物接种对猪粪堆肥发酵过程的影响[J]. 植物营养与肥料学报, 2004, 10(5): 557−559. DOI: 10.3321/j.issn:1008-505X.2004.05.021Sun X H, Luo A C, Qiu D. Effect of inoculant on composting process of swine manure[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(5): 557−559. DOI: 10.3321/j.issn:1008-505X.2004.05.021
[23] 李洁, 吴明亮, 汤远菊, 龚昕. 有机肥施肥机械的研究现状与发展趋势[J]. 湖南农业大学学报(自然科学版), 2013, 39(1): 97−100.Li J, Wu M L, Tang Y J, Gong X. Research status and development trand of organic fertilizer machinery[J]. Journal of Hunan Agricultural University (Natural Sciences), 2013, 39(1): 97−100.
[24] 杨帆, 马常宝. 我国有机肥料利用现状及发展前景[A]. 第五届全国绿色环保肥料新技术、新产品交流会[C]. 北京: 中国腐植酸工业协会, 2005.Yang F, Ma C B. Present situation and developmental prospection of organic fertilizer utilization in China[A]. The fifth national green fertilizer new technology, new products exchange meeting[C] Beijing: China Humic Acid Industry Association, 2005.
[25]Dong W T, Zhu Y Y, Chang H Z, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021, 589: 586−590.
[26]Liu Z J, Yang J, Long Y P, et al. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago[J]. Nature Plants, 2023, 9(10): 1734−1748. DOI: 10.1038/s41477-023-01524-8
[27]Wang T, Guo J, Peng Y Q, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation[J]. Science, 2021, 374: 65−71. DOI: 10.1126/science.abh2890
[28]Ke X L, Xiao H, Peng Y Q, et al. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state[J]. Science, 2022, 378: 971−977.
[29]Zhong X B, Wang J, Shi X L, et al. Genetically optimizing soybean nodulation improves yield and protein content[J]. Nature Plants, 2024, 10(5): 736−742.
[30]Shi J C, Zhao B Y, Zheng S, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527−5540.
[31]Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356: 1172−1175. DOI: 10.1126/science.aam9970
[32]Yu H M, Bai F X, Ji C Y, et al. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Science of the United States of America, 2023, 120(27): e2301884120.
[33]Feng H C, Lü Y, Krell T, et al. Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of Bacillus velezensis to sense different ligands[J]. Proceedings of the National Academy of Science of the United States of America, 2022, 119(29): e2201747119. DOI: 10.1073/pnas.2201747119
[34]Xu Z H, Shao J H, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Applied and Environmental Microbiology, 2013, 79(3): 808−815. DOI: 10.1128/AEM.02645-12
[35]Xu Z H, Mandic-Mulec I, Zhang H H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway[J]. Cell Reports., 2019, 29(5): 1192−1202.
[36]Zhan Y H, Yan Y L, Deng Z P, et al. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Science of the United States of America, 2016, 113(30): E4348−E4356.
[37]Li Q, Zhang H W, Song Y, et al. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27[J]. Proceedings of the National Academy of Science of the United States of America, 2022, 119(49): e2215855119.
[38]Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684.
[39]Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481−499.
[40]Liu C, Jiang M T, Yuan M M, et al. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils[J]. Nature Food, 2023, 4(10): 912−924.
[41]Xun W B, Ren Y, Yan H, et al. Sustained inhibition of maize seed-borne Fusarium using a Bacillus-dominated rhizospheric stable core microbiota with unique cooperative patterns[J]. Advanced Science, 2023, 10(5): 2205215.
[42]Jiang Y, Xie Q J, Wang W X, et al. Medicago AP2-Domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis[J]. Molecular Plant, 2018, 11(11): 1344–1359.
[43]Luo Y M, Li G X, Luo W H, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting[J]. Journal of Environmental Science, 2013, 25(7): 1338−1345.
[44] 袁永康. 外加电场及生物炭强化低温厌氧发酵产甲烷研究[D]. 河南郑州: 河南农业大学硕士学位论文, 2024.Yuan Y K. Study on enhancement of methane production by low temperature anaerobic digestion with electric field and biochar[D]. Zhengzhou, Henan: MS Thesis of Henan Agricultural University, 2024.
[45]Jiang J S, Wang Y, Liu j, et al. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity[J]. Bioresource Technology, 2019, 286: 121397.
[46]Ren X N, Wang Z Y, Zhao M X, et al. Role of selenite on the nitrogen conservation and greenhouse gases mitigation during the goat manure composting process[J]. Science of the Total Environment, 2022, 838: 155799.
[47] 罗一鸣, 李国学, Schuchardt F, 等. 过磷酸钙添加剂对猪粪堆肥温室气体和氨气减排的作用[J]. 农业工程学报, 2012, 28(22): 235−242.Luo Y M, Li G X, Schuchardt F, et al. Effects of additive superphosphate on NH3, N2O and CH4 emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(22): 235−242.
[48]Xiong J P, Su Y, He X Q, et al. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes[J]. Bioresource Technology, 2022, 354: 127205.
[49]Sun Q H, Wu D, Zhang Z C, et al. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting start-up at low temperature[J]. Bioresource Technology, 2017, 244: 635−640.
[50]Wang X G, Tian L, Li Y X, et al. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting[J]. Bioresource Technology, 2022, 359: 127458.
[51]Wu J Q, Qi H S, Huang X N, et al. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw[J]. Bioresource Technology, 2018, 269: 169−178.
[52]Wu J Q, Wei Z M, Zhu Z C, et al. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting[J]. Bioresource Technology, 2020, 311: 123500.
[53]Duan M L, Zhang Y H, Zhou B B, et al. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting[J]. Bioresource Technology, 2020, 303: 122868.
[54]Cao Y, Wang J D, Huang H Y, et al. Spectroscopic evidence for hyperthermophilic pretreatment intensifying humification during pig manure and rice straw composting[J]. Bioresource Technology, 2019, 294: 122131.
[55]Huang X L, Jia Z X, Guo J J, et al. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol[J]. Geoderma, 2019, 355: 113880.
[56]Gao X T, Tan W B, Zhao Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environmental Science & Technology, 2019, 53(7): 3653−3662.
[57]Zhang Y C, Yue D B, Ma H. Darkening mechanism and kinetics of humification process in catechol-Maillard system[J]. Chemosphere, 2015, 130: 40−45.
[58]Wei Z M, Mohamed T A, Zhao L, et al. Microhabitat drive microbial anabolism to promote carbon sequestration during composting[J]. Bioresource Technology, 2022, 346: 126577.
[59]Sun Y, Ren X N, Pan J T, et al. Effect of microplastics on greenhouse gas and ammonia emissions during aerobic composting[J]. Science of the Total Environment, 2020, 737: 139856.
[60]Liang J Y, Zhou Z G, Huo C F, et al. More replenishment than priming loss of soil organic carbon with additional carbon input[J]. Nature Communications, 2018, 9(1): 3175.
[61]Shi T S, Collins S L, Yu K L, et al. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands[J]. Nature Communications, 2024, 15(1): 3411.
[62]Jia Z X, Huang X L, Li L N, et al. Rejuvenation of iron oxides enhances carbon sequestration by the ‘iron gate’ and ‘enzyme latch’ mechanisms in a rice-wheat cropping system[J]. Science of the Total Environment, 2022, 839: 156209.
[63]Wan D, Ma M K, Peng N, et al. Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils[J]. Science of the Total Environment, 2021, 772: 145037.
[64]Yu G H, Xiao J, Hu S J, et al. Mineral availability as a key regulator of soil carbon storage[J]. Environmental Science & Technology, 2017, 51(9): 4960−4969.
[65]Zhao Z B, He J Z, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7: 33.
[66]Gao Y Q, Huang J Q, Reyt G, et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier[J]. Science, 2023, 382: 464−471.
相关知识
白由路:化学肥料与生态健康
肺康复:回顾与展望
健康照明应用研究发展与展望
汪丽萍:全谷物中生理活性物质的研究进展与展望
《2023年医药研发年度回顾》:中国已成全球第二大药研大国
国内药政回顾:2022年1-4月,我国药品监管的点与线
中国孕妇营养与健康状况十年回顾
中国健康瘦身市场发展深度分析与投资前景研究报告(2022
智研咨询:中国减肥产品行业市场规模、供需态势及发展前景研究
中国运动康复行业现状深度研究与发展前景调研报告
网址: 中国生物肥料与有机肥料研究三十年:回顾与展望 https://www.trfsz.com/newsview193871.html
推荐资讯
- 1从出汗看健康 出汗透露你的健 3946
- 2早上怎么喝水最健康? 3723
- 3习惯造就健康 影响健康的习惯 3369
- 4五大原因危害女性健康 如何保 3271
- 5连花清瘟、布洛芬等多款感冒药 3003
- 6男子喝水喉咙里像放了刀子一样 2500
- 7补肾吃什么 补肾最佳食物推荐 2442
- 810人混检核酸几天出结果?1 2263
- 9第二轮新冠疫情要来了?疾控中 2256
- 10转阴多久没有传染性?满足四个 2196